奥威软件交流社区

数据挖掘的常用方法

2011-3-30 12:45
509012
       1.决策树方法
决策树是一种常用于预测模型的算法,它通过一系列规则将大量数据有目的分类,从中找到一些有价值的、潜在的信息。它的主要优点是描述简单、分类速度快、易于理解、精度较高,特别适合大规模的数据处理,在知识发现系统中应用较广。它的主要缺点是很难基于多个变量组合发现规则。在数据挖掘中,决策树方法主要用于分类。
        2
.神经网络方法
神经网络是模拟人类的形象直觉思维,在生物神经网络研究的基础上,根据生物神经元和神经网络的特点,通过简化、归纳、提炼总结出来的一类并行处理网络,利用其非线性映射的思想和并行处理的方法,用神经网络本身结构来表达输入和输出的关联知识。
        3
.粗糙集方法
粗糙集理论是一种研究不精确、不确定知识的数学工具。粗糙集处理的对象是类似二维关系表的信息表。目前成熟的关系数据库管理系统和新发展起来的数据仓库管理系统,为粗糙集的数据挖掘奠定了坚实的基础。粗糙集理论能够在缺少先验知识的情况下,对数据进行分类处理。在该方法中知识是以信息系统的形式表示的,先对信息系统进行归约,再从经过归约后的知识库抽取得到更有价值、更准确的一系列规则。
因此,基于粗糙集的数据挖掘算法实际上就是对大量数据构成的信息系统进行约简,得到一种属性归约集的过程,最后抽取规则。
        4
.遗传算法
遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法。数据挖掘是从大量数据中提取人们感兴趣的知识,这些知识是隐含的、事先未知的、潜在有用的信息。因此,许多数据挖掘问题可以看成是搜索问题,数据库或者数据仓库为搜索空间,挖掘算法是搜索策略。应用遗传算法在数据库中进行搜索,对随机产生的一组规则进行进化,直到数据库能被该组规则覆盖,就可以挖掘出隐含在数据库中的规则。
分享到 :
0 人收藏

12 个回复

倒序浏览
forever  会员 | 2011-3-30 12:46:28
回复 huang555qi 的帖子

  数据挖掘技术在各个需要进行信息分析的领域得到十分广泛的应用。它可以带来显著的经济效益,不仅可以控制成本,也可以给企业带来更多效益。在金融业,可以通过信用卡历史数据的分析,判断哪些人有风险,哪些人没有;在超市,可以通过对超市交易信息的分析,安排货价及货物摆设,以提高销售收入;在保险业,可以通过对保险公司客户记录的分析,来判定哪些客户是花费昂贵的对象;在学校,可以通过分析学校学生课程及成绩等信息,来判断课程之间的关系。此外,在医学中,可以利用数据挖掘技术对疾病发作前后症状的分析,来对病症进行诊断;在体育运动中,利用数据挖掘技术对对抗性强的积极运动进行分析,发现对方弱点,制定有效的战术。
abraham34  版主 | 2011-3-31 11:14:06
回复 forever 的帖子

老兄 高手啊 学习了 ~~
huang555qi  版主 | 2011-3-31 11:14:47
回复 forever 的帖子

非常好 例子很具体
猫公主  版主 | 2012-1-9 19:10:04
学习了.....
kellen  会员 | 2012-1-19 10:32:15
非常好 例子很具体
kellen  会员 | 2012-1-19 10:32:40
再顶
zcc  会员 | 2012-3-27 13:30:18
很贴切,很强大
huang555qi  版主 | 2012-3-30 09:12:18
zcc 发表于 2012-3-27 13:30
很贴切,很强大

aymg58512  会员 | 2012-12-11 14:53:55
以后需再关注,现在先帮你顶一下
您需要登录后才可以回帖 登录 | 注册

本版积分规则

奥威软件|联系奥威|新手须知| ( 粤ICP备09215901号-2   

Powered by Discuz! X3.2 © 2001-2016 Comsenz Inc.

返回顶部