奥威软件交流社区
  大数据是指具有可追踪、可分析、可量化特性的数据。大数据概念里的“大”,是指“大数据”所应具有的“大量化”(Volume)、“多样化”(Variety)两个特征。
  随着大数据带来了潜在经济价值和社会价值巨大,但这些价值必须通过数据的有效整合、分析和挖掘才能释放出来。数据的整合是建立数据仓库的必要工作,对于结构化数据的整合有很多解决方案和软件工具。目前的挑战是非结构化数据的融合和整合,如:文本数据、图像数据、信号数据、音频数据、视频数据等。
  数据挖掘是从存放在数据库、数据仓库或者其他信息库中大量的不完全的有噪声的模糊的随机的数据中提取隐含在其中的人们事先未知、但潜在有用的信息和知识过程。表现形式为:规则、概念、规律及模式等。数据挖掘是一门广义的交叉学科,从一个新的角度把数据库技术、人工智能、统计学等领域结合起来,从更深层次发掘存在于数据内部新颖、有效、具有潜在效用的乃至最终可理解的模式。在数据挖掘中,数据分为训练数据、测试数据、和应用数据。数据挖掘的关键是在训练数据中发现事实,以测试数据作为检验和修正理论的依据,把知识应用到数据中去。
  NLPIR大数据语义智能教学科研平台是大数据语义智能分析专业的教学科研综合平台。平台以自然语言理解为核心,结合北理工团队多年的科学研究与一线教学经验,以科学严谨的方式,致力于提升学员大数据与人工智能的教学培训、科学研究与工程实践的水平。
  NLPIR大数据语义智能教学科研平台具有一套完善且丰富的教学体系,课程教材、视频教学、实训平台、实验验证和项目案例五位一体。
  NLPIR大数据语义智能教学科研平台教学内容丰富,主要围绕大数据、人工智能和自然语言理解三大核心领域展开,核心内容包括以下几个方面:
  1)科学的大数据观:大数据的定义,科学发展渊源;如何科学看待大数据?如何把握大数据,分别从“知著”、“显微”、“晓义”三个层面阐述科学的大数据观。
  2)大数据技术平台与架构:云计算技术与开源平台搭建;Hadoop、Spark等数据架构、计算范式与应用实践;TensorFlow深度学习平台。
  3)机器学习与常用数据挖掘:常用机器学习算法:Bayes, SVM,深度神经网络等;常用数据挖掘技术:关联规则挖掘、分类、聚类、奇异点分析;深度学习:CNN, RNN, LSTM, Attention模型,seq2seq模型。
  4)大数据语义精准搜索:通用搜索引擎与大数据垂直业务的矛盾;大数据精准搜索的基本技术:快速增量倒排索引、结构化与非机构化数据融合、大数据排序算法、语义关联、自动缓存与优化机制;大数据精准搜索语法:邻近搜索、复合搜索、情感搜索、精准搜索;
  5)非结构化大数据语义挖掘
  语义理解基础:ICTCLAS与汉语分词;内容关键语义自动标引与词云自动生成;大数据聚类;大数据分类与信息过滤;大数据去重、自动摘要;情感分析与情绪计算;不良信息智能过滤.
  6)知识图谱的大数据自动构建与应用:知识图谱概念;知识点的自动发现;基于bootstrapping的知识大数据生成;
  7)NLPIR智能语义平台:NLPIR智能语义分析在线云服务;NLPIR Parser语义分析平台实训;NLPIR智能语义二次开发接口与教程。
  8)大数据应用案例剖析与综述:国家电网大数据应用案例;新媒体传播创新与头条应用;非结构化大数据挖掘。
  有数据显示,全球范围内,人工智能专业人才有195万,而中国拥有10年以上经验的资深人工智能人才相比美国,有较大差距。目前,中国在发展人工智能这一前沿领域,更多依赖于引进大量海外人才,毕竟在中国本土,高层次的相关人才极其稀缺。NLPIR大数据语义智能教学科研平台是有针对性地在设立人工智能相关教育资源,从源头上打造人工智能人才队伍。

分享到 :
0 人收藏
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐上一条 /1 下一条

奥威软件|联系奥威|新手须知| ( 粤ICP备09215901号-2    联系客服

Powered by Discuz! X3.2 © 2001-2016 Comsenz Inc.

返回顶部