奥威软件交流社区
  随着计算机技术的发展,信息数据越来越多,如何从海量数据中提取对人们有价值的信息已经成为一个非常迫切的问题。由此产生了数据挖掘技术,它是一门新兴的交叉学科,汇集了来自机器学习、模式识别、数据库、统计学、人工智能等各领域的研究成果。数据挖掘是从大量数据中提取出可信、新颖、有效并能被人理解的模式的高级处理过程。其目标是从数据库中发现隐含的、有意义的知识。
  数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据集中识别出有效的、新颖的、潜在有用的,以及最终可理解的知识的非平凡过程。这个定义包括几层含义:数据源必须是真实的、大量的、含噪声的;发现的是用户感兴趣的知识;发现的知识要可接受、可理解、可运用;并不要求发现放之四海皆准的知识,仅支持特定的发现问题。
  数据挖掘,简单地可理解为通过对环境数据的操作,从数据中发现有用的知识。它是一门涉及面很广的交叉学科,包括机器学习、数理统计、神经网络、数据库、模式识别、粗糙集、模糊数学等相关技术。就具体应用而言,数据挖掘是一个利用各种分析工具在海量数据中发现模型和数据间关系的过程,这些模型和关系可以用来做出预测。
  数据挖掘是一个以数据库、人工智能、数理统计、可视化四大支柱技术为基础,我们知道,描述或说明一个算法设计分为三个部分:输入、输出和处理过程。数据挖掘算法的输入是数据库,算法的输出是要发现的知识或模式,算法的处理过程则设计具体的搜索方法。
  NLPIR大数据语义智能分析平台针对大数据内容采编挖搜的综合需求,融合了网络精准采集、自然语言理解、文本挖掘和语义搜索的最新研究成果,先后历时十八年,服务了全球四十万家机构用户,是大数据时代语义智能分析的一大利器。
  NLPIR大数据语义智能挖掘平台,针对大数据内容处理的需要,融合了网络精准采集、自然语言理解、文本挖掘和网络搜索的技术,提供了客户端工具、云服务、二次开发接口。
  NLPIR能够全方位多角度满足应用者对大数据文本的处理需求,包括大数据完整的技术链条:网络抓取、正文提取、中英文分词、词性标注、实体抽取、词频统计、关键词提取、语义信息抽取、文本分类、情感分析、语义深度扩展、繁简编码转换、自动注音、文本聚类等。
  随着数据挖掘技术应用范围的不断扩展,人类社会的方方面年几乎都会被数据挖掘涉足。尽管数据挖掘原本是作为一项技术出现的,但由于数据挖掘本身独有的理念给人们处理解决各类问题都提供了一个新的思路和方法,在这一点上数据挖掘一定程度上等同于一种方法论,在未来的一段时期里必将对人类生产生活产生重大影响。
  你可以是高校老师与学生,用之于报告、论文等各种文本的处理;
  你可以是专业计算机、数据分析专家,用之于技术、项目等研发;
  你可以是编辑、自媒体人,用之于内容挖掘、审核与自动生成。
  ......
  当然,大数据语义智能挖掘平台能做的,还有更多!
  我们的目标:读懂自然语言,挖掘数据价值,智能服务生活!

分享到 :
0 人收藏
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐上一条 /1 下一条

奥威软件|联系奥威|新手须知| ( 粤ICP备09215901号-2    联系客服

Powered by Discuz! X3.2 © 2001-2016 Comsenz Inc.

返回顶部